Skip to main content

PREDICTION OF THE DEW PINT PRESSURE OF A GAS CONDENSERATE RESERVOIR

ATTENTION:

BEFORE YOU READ THE ABSTRACT OR CHAPTER ONE OF THE PROJECT TOPIC BELOW, PLEASE READ THE INFORMATION BELOW.THANK YOU!

 

INFORMATION:

YOU CAN GET THE COMPLETE PROJECT OF THE TOPIC BELOW. THE FULL PROJECT COSTS N10,000 ONLY. THE FULL INFORMATION ON HOW TO PAY AND GET THE COMPLETE PROJECT IS AT THE BOTTOM OF THIS PAGE. OR YOU CAN CALL: 08068231953, 08168759420

 

 

PREDICTION OF THE DEW PINT PRESSURE OF A GAS CONDENSERATE RESERVOIR

 

CHAPTER ONE

INTRODUCTION

 1.1   Background of study

Gas Condensate Reservoir is a reservoir having low-density mixture of liquid hydrocarbons that are present as gaseous components in the subsurface (in the reservoir). It is important to recognize that some gas condensate reservoirs show condensate dropping out within reservoirs, as well as condensate production at the surface due to pressure falling below the dew-point during production. This condensate accumulation in the reservoir initially remains immobile due to interfacial forces between it and connate water within the pores of the formation until its saturation level reaches a threshold value and becomes mobile.

Initially, the gas-condensate is totally gas in the reservoir. As reservoir pressure decreases, the gas condensate exhibits a dew-point. The dew-point of a gas condensate fluid occurs when a gas mixture containing heavy hydrocarbon is depressurized until liquid is formed, that is, a substantial amount of gas phase exists in equilibrium with an infinitesimal amount of liquid phase. A pressure is reduced; liquid condenses from the gas to form free liquid in the reservoir. Normally, there is no effective permeability to this liquid phase and it is not produced. If the pressure continues to decrease, a second dew-point will be reached and the liquid can be re-vaporized. This lower dew-point pressure is usually well below the reservoir abandonment pressure; thus it would be of no interest in reservoir performance.

By definition, dew-point pressure is simply the pressure at which an infinitesimal amount of liquid is in equilibrium with a large quantity of gas. the pressure below which liquid condense out of the gaseous phase.

A phase behaviour can be defined as the characteristics (changes in phase) exhibited by the gas when subjected to different temperature-pressure conditions.

During production, the hydrocarbon molecules undergo various phase and some property change, altering intermediate stages which are crucial in designing and operating the processes efficiently and optimally.

Unlike a pure substance that has both bubble-point and dew-point the same at a particular temperature and pressure, a gas condensate reservoir is a multi-component system thus at a particular temperature and pressure, each component present, exhibit their different characteristics. This is because the natural gas reservoir is not an ideal mixture. This can be seen clearly in fig 1.1.

Figure 1.1, Phase behaviour of Gas condensate reservoir by Li Fan, College Station, Texas, USA.

1.2    Problem statement

Condensate liquid saturation usually build up near a wellbore area because of drawdown below the dew-point pressure, ultimately restricting the flow of gas. The near-well choking can reduce the productivity of a well by a factor of two or more. The phenomenon called condensate blockage or condensate banking, results from a combination of factors, including fluid phase properties, formation flow characteristics and pressures in the formation and in the wellbore. If these factors are not understood at the beginning of field development, sooner or later production performance can suffer. This condensate blockage is a major challenge in the oil and gas sector since production rate is reduced. Therefore, the dew-point pressure at which this formation occurs needs to be accurately predicted in order to reduce reservoir damage caused by condensate blockage and thus increase production rate.

1.3    Aim and objectives

1.31  Aim

To improve the prediction of the dew-point pressure of a gas condensate reservoir.

1.32  Objectives

·       Generation of gas condensate data

·       Generation of a new mathematical correlation to accurately predict dew-point pressure

1.4    Significance of work

Every day, the petroleum industries are producing fluid from the condensate reservoirs in order to satisfy human and industrial needs. It is of great concern on the path of production and reservoir engineers to make sure the dew-point pressure of a gas condensate reservoir is accurately known.

As described earlier, the condensate reservoirs when produced below dew-point pressure tends to release liquid which reduce formation permeability and thus reduce production rate.

For example, well productivity in the Arun field, in North Sumatra, Indonesia, declined significantly about 10 years after production began. Well studies, including pressure transient testing, indicated the loss was caused by accumulation of condensate near the wellbore.

Therefore, this article focuses on the prediction of the dew-point pressure of a gas condensate reservoir so that production and reservoir engineers can be aware and produce gas condensate reservoirs optimally.

1.5    Scope of work

The scope of this project is limited to developing a mathematical correlation that would be used to accurately predict the dew-point pressure of a gas condensate reservoir using data from literature.

 

HOW TO GET THE FULL PROJECT WORK

 

PLEASE, print the following instructions and information if you will like to order/buy our complete written material(s).

 

HOW TO RECEIVE PROJECT MATERIAL(S)

After paying the appropriate amount (#10,000) into our bank Account below, send the following information to

08068231953 or 08168759420

 

(1)    Your project topics

(2)     Email Address

(3)     Payment Name

(4)    Teller Number

We will send your material(s) after we receive bank alert

 

BANK ACCOUNTS

Account Name: AMUTAH DANIEL CHUKWUDI

Account Number: 0046579864

Bank: GTBank.

 

OR

Account Name: AMUTAH DANIEL CHUKWUDI

Account Number: 2023350498

Bank: UBA.

 

 

 

FOR MORE INFORMATION, CALL:

08068231953 or 08168759420

 

 

AFFILIATE LINKS:

myeasyproject.com.ng

easyprojectmaterials.com

easyprojectmaterials.net.ng

easyprojectsmaterials.net.ng

easyprojectsmaterial.net.ng

easyprojectmaterial.net.ng

projectmaterials.com.ng

googleprojectsng.blogspot.com

myprojectsng.blogspot.com.ng

https://projectmaterialsng.blogspot.com.ng/

https://foreasyprojectmaterials.blogspot.com.ng/

https://mypostumes.blogspot.com.ng/

https://myeasymaterials.blogspot.com.ng/

https://eazyprojectsmaterial.blogspot.com.ng/

https://easzprojectmaterial.blogspot.com.ng/

 

 

 


Comments

Popular posts from this blog

DESIGN AND IMPLEMENTATION OF A COMPUTERISED BANKING SYSTEM

  ATTENTION   BEFORE YOU READ THE ABSTRACT OR CHAPTER ONE OF THE PROJECT TOPIC BELOW, PLEASE READ THE INFORMATION BELOW.THANK YOU!   INFORMATION: YOU CAN GET THE COMPLETE PROJECT OF THE TOPIC BELOW. THE FULL PROJECT COSTS N5,000 ONLY. THE FULL INFORMATION ON HOW TO PAY AND GET THE COMPLETE PROJECT IS AT THE BOTTOM OF THIS PAGE. OR YOU CAN CALL: 08068231953, 08168759420   WHATSAPP US ON  08137701720       DESIGN AND IMPLEMENTATION OF A COMPUTERISED BANKING SYSTEM     ABSTRACT In this world of competitive resource application and technological development, the banks have been totally computerized. This project work Design and Implementation of computerized banking system is concerned with the analysis and design of a computerized system aimed at supporting the whole banking operation provides an interface which enables the user or the customer to lodge in money into his or her account and make withdrawals as t...

ROLE OF TELEVISION ON CHILDREN HEALTH CARE SYSTEM. A CASE STUDY OF A SUITABLE TV PROGRAME

ATTENTION: BEFORE YOU READ THE ABSTRACT OR CHAPTER ONE OF THE PROJECT TOPIC BELOW, PLEASE READ THE INFORMATION BELOW.THANK YOU!   INFORMATION: YOU CAN GET THE COMPLETE PROJECT OF THE TOPIC BELOW. THE FULL PROJECT COSTS N5,000 ONLY. THE FULL INFORMATION ON HOW TO PAY AND GET THE COMPLETE PROJECT IS AT THE BOTTOM OF THIS PAGE. OR YOU CAN CALL: 08068231953, 08168759420       ROLE OF TELEVISION ON CHILDREN HEALTH CARE SYSTEM. A CASE STUDY OF A SUITABLE TV PROGRAME   ABSTRACT This work discusses role of television on children health care system. A case study of a suitable tv program. A hundred and twenty questionnaires were distributed among people from selected secondary schools. Interviews and surveys were also conducted.   Primary and secondary data will be used in the analysis. Tables and percentages will also be used as the instrument of analysis   It will be observed therefore that television have a strong and significant...

THE IMPACT OF OIL AND NON-OIL EXPORTS ON THE ECONOMIC GROWTH OF NIGERIA

ATTENTION: BEFORE YOU READ THE CHAPTER ONE OF THE PROJECT TOPIC BELOW, PLEASE READ THE INFORMATION BELOW.THANK YOU! INFORMATION: YOU CAN GET THE COMPLETE PROJECT OF THE TOPIC BELOW. THE FULL PROJECT COSTS N5,000 ONLY. THE FULL INFORMATION ON HOW TO PAY AND GET THE COMPLETE PROJECT IS AT THE BOTTOM OF THIS PAGE. OR YOU CAN CALL: 08068231953, 08168759420 THE IMPACT OF OIL AND NON-OIL EXPORTS ON THE ECONOMIC GROWTH OF NIGERIA Unit Root Test for Stationarity ------------------------------------------- Co-integration Result ------------------------------------------------------ Modeling Log of Differenced GDP by OLS -------------------------- Modeling Log of Differenced INV by OLS ------------------------ Summary of t-statistic test for model 1 ------------------------------ Summary of t-statistic test for model 2 ------------------------------ TABLE OF CONTENT Title page ----------------------------------------------------------------  ...